L’intelligenza artificiale continua a rivoluzionare settori interi, dalla sanità al diritto, dalla finanza ai media digitali. Alla base di questi progressi c’è la capacità di addestrare sistemi sempre più complessi grazie a enormi volumi di dati. Ma proprio su questo punto si concentra oggi uno dei dibattiti più accesi in Europa e nel resto del mondo: come bilanciare lo sviluppo tecnologico con la tutela della privacy e dei diritti di proprietà intellettuale.
Con il nuovo regolamento europeo sull’intelligenza artificiale, l’AI Act, approvato nel 2024, e il rafforzamento delle norme GDPR, i riflettori si sono accesi sulle modalità di acquisizione e utilizzo dei dati per addestrare i modelli AI. La normativa europea impone infatti obblighi di trasparenza, responsabilità e rendicontazione alle aziende che sviluppano questi sistemi, chiedendo di rendere pubbliche le fonti di dati utilizzate e di rispettare i diritti d’autore.
Il nodo centrale resta l’uso di contenuti protetti da copyright senza consenso. Le principali realtà del settore, da Google a Meta, da OpenAI a Stability AI, hanno scelto strategie diverse per aggirare o affrontare il problema: c’è chi ricorre a contenuti open source, chi limita l’uso di dati europei o permette agli utenti di escludere i propri contributi dai dataset di addestramento. E intanto, aumentano le azioni legali: celebri quelle di Getty Images contro Stability AI e del New York Times contro OpenAI e Microsoft.
Di fronte a questa stretta normativa, una possibile via d’uscita tecnologica è rappresentata dai dati sintetici, ovvero informazioni generate artificialmente per imitare le caratteristiche statistiche dei dati reali, ma senza contenere dati personali o protetti da copyright. Una soluzione che promette di rispettare privacy e proprietà intellettuale, pur ponendo nuove sfide: riprodurre fedelmente la complessità dei dati reali e prevenire il rischio di bias nei modelli.
Non mancano le criticità: la produzione di dati sintetici richiede validazioni rigorose e non sempre riesce a replicare tutte le sfumature delle situazioni reali. Inoltre, il rischio di creare nuove distorsioni è concreto e i modelli basati su dati sintetici devono essere accuratamente testati prima di essere impiegati su larga scala.
Il futuro dell’intelligenza artificiale si giocherà dunque su un equilibrio delicato tra compliance normativa e innovazione tecnologica. La domanda è aperta: a guidare la prossima fase saranno le aule dei tribunali o i laboratori di ricerca?
Iscriviti al canale Telegram di Servicematica
Notizie, aggiornamenti ed interruzioni. Tutto in tempo reale.
LEGGI ANCHE
Riforma Forense, così non va: rischio vertici troppo longevi e poca rappresentanza
Il Presidente dell’Ordine degli Avvocati di Roma, Alessandro Graziani, in audizione alla Camera critica la proposta di riforma dell’Ordinamento forense: Roma non adeguatamente rappresentata nel…
Cittadinanza, via libera definitivo alla stretta: sì della Camera al decreto
Approvato il provvedimento che limita il riconoscimento ai nati all’estero: passaporto italiano solo fino ai nipoti. Introdotte novità per minori e lavoratori discendenti
Giustizia lumaca, cambiano le regole: indennizzi anche durante il processo
Il decreto legge introduce novità sui tempi per chiedere la riparazione da durata irragionevole del processo. Si potrà agire già in corso di giudizio, ma…
