L’intelligenza artificiale continua a rivoluzionare settori interi, dalla sanità al diritto, dalla finanza ai media digitali. Alla base di questi progressi c’è la capacità di addestrare sistemi sempre più complessi grazie a enormi volumi di dati. Ma proprio su questo punto si concentra oggi uno dei dibattiti più accesi in Europa e nel resto del mondo: come bilanciare lo sviluppo tecnologico con la tutela della privacy e dei diritti di proprietà intellettuale.
Con il nuovo regolamento europeo sull’intelligenza artificiale, l’AI Act, approvato nel 2024, e il rafforzamento delle norme GDPR, i riflettori si sono accesi sulle modalità di acquisizione e utilizzo dei dati per addestrare i modelli AI. La normativa europea impone infatti obblighi di trasparenza, responsabilità e rendicontazione alle aziende che sviluppano questi sistemi, chiedendo di rendere pubbliche le fonti di dati utilizzate e di rispettare i diritti d’autore.
Il nodo centrale resta l’uso di contenuti protetti da copyright senza consenso. Le principali realtà del settore, da Google a Meta, da OpenAI a Stability AI, hanno scelto strategie diverse per aggirare o affrontare il problema: c’è chi ricorre a contenuti open source, chi limita l’uso di dati europei o permette agli utenti di escludere i propri contributi dai dataset di addestramento. E intanto, aumentano le azioni legali: celebri quelle di Getty Images contro Stability AI e del New York Times contro OpenAI e Microsoft.
Di fronte a questa stretta normativa, una possibile via d’uscita tecnologica è rappresentata dai dati sintetici, ovvero informazioni generate artificialmente per imitare le caratteristiche statistiche dei dati reali, ma senza contenere dati personali o protetti da copyright. Una soluzione che promette di rispettare privacy e proprietà intellettuale, pur ponendo nuove sfide: riprodurre fedelmente la complessità dei dati reali e prevenire il rischio di bias nei modelli.
Non mancano le criticità: la produzione di dati sintetici richiede validazioni rigorose e non sempre riesce a replicare tutte le sfumature delle situazioni reali. Inoltre, il rischio di creare nuove distorsioni è concreto e i modelli basati su dati sintetici devono essere accuratamente testati prima di essere impiegati su larga scala.
Il futuro dell’intelligenza artificiale si giocherà dunque su un equilibrio delicato tra compliance normativa e innovazione tecnologica. La domanda è aperta: a guidare la prossima fase saranno le aule dei tribunali o i laboratori di ricerca?
Iscriviti al canale Telegram di Servicematica
Notizie, aggiornamenti ed interruzioni. Tutto in tempo reale.
LEGGI ANCHE

L’UE approva il regolamento ePrivacy
Dopo un percorso di 4 anni, il Consiglio Europeo ha trovato un accordo sulla versione finale del Regolamento ePrivacy. Si dà dunque il via alla…

Ammissione al gratuito patrocino, da quando decorre?
Gli effetti dell’ammissione al gratuito patrocinio decorrono dal momento della domanda di ammissione o successivamente? IL CASO Un avvocato si rivolge al tribunale per ottenere…

L’importanza di scrivere bene un ricorso (lo dice anche la Cassazione)
Un avvocato che scrive un ricorso poco chiaro, incoerente e prolisso non può stupirsi dell’eventuale dichiarazione di inammissibilità da parte della Cassazione. Una tale situazione…